巩龙延介绍

发布时间:2019-01-15浏览次数:1742

姓  名

巩龙延

性  别

出生年月

1976.5

学历学位

博士

职称\职务

教授\江苏省新能源技术工程实验室主任、应用物理学系主任

部  门

应用物理学系

导师类别

硕导

指导专业

凝聚态物理、量子信息处理

办公地点

2-325

办公电话


电邮地址

LYGONG@njupt.edu.cn

个人主页


主授课程

固体物理、凝聚态物理量子信息技术处理

社会

兼职

全国高等学校固体物理研究会常务理事

研究

方向

1、量子多体局域化理论

2、量子传感理论

3、量子电池理论

个人

简历

2002.092005.0南京大学物理系博士研究生

2005.072007.12   BETVLCTOR伟德官网app下载 讲师

2006.102008.10    南京师范大学数学系 博士后

2008.01至今    硕士生导师

2010.022010.10    台北县淡江大学物理系 博士后

2012.0江苏省青蓝工程优秀青年骨干教师

2014.0至今 BETVLCTOR伟德官网app下载 教授

2016.12  江苏省新能源技术工程实验室主任

2017.0应用物理系主任

近年

成果

亮点

1、提出同时包含周期边界条件和非周期边界条件的香农熵,量度量量子态的局域化程度 [Europhysics Letters, 122370022018]

2、研究了波粒二象性与安德森局域化间的定量关系[Phys. Rev. A  940321252016];

3提出了新的量度量量子态的局域化程度[Physics Letters A 380 ,59,2016];

4提出了新的量度量二元随机信号的无序程度,评审人认为该工作是对已有理论的一个较好的补充 [Physica  A 422, 66,2015];

5基于冯.诺依曼熵,提出了个新的物理量来区分扩展态、局域态和临界态[Phys. Rev. E 86, 061122 2012];

6提出了新颖的基于互认证的一次性口令产生方案[Journal of Computer and System Sciences 79 ,122(2012)];

7提出了新颖的量子秘钥产生方案并实验验证[Chin. Phys. Lett. 30,060305 (2013)].

研究

项目

主持的科研项目
国家自然科学基金(Grant No. 10904074) 、江苏省教育厅基金(Grant No.08KJB14000506KJD140135)

论著
代表作

[1]Longyan Gong(巩龙延), Jingjing Zhang, Kaixin Ma, Xingfei Zhou1, Xuechao Zhai,Weiwen Cheng and Shengmei ZhaoA novel quantum Shannon entropy as a sensitivity of Anderson transitions It simultaneously relates to periodic and antiperiodic boundary conditions[J]. Europhysics Letters, 122, 37002 (2018).

[2]Longyan Gong(巩龙延), YanFeng, Yougen Ding. Anderson localization in one-dimensional quasiperiodic lattice models with nearest- and next-nearest-neighbor hopping [J].Physics Letters A 381,588,2017.

[3] Longyan Gong(巩龙延), Bingjie Xue, Wenjia Li, Weiwen Cheng, and Shengmei Zhao. Transition from particlelike to wavelike behavior for an electron in one-dimensional nonuniform lattice systems[J].Phys. Rev. A 940321252016 .

[4]L. Gong(巩龙延), H. Wang, W. Cheng, S. Zhao. A measurement of disorder in binary sequences [J]. Physica A, 422, 66 (2015).

[5] L. Gong (巩龙延),Y. Zheng, H. Wang, W. Cheng, S. Zhao. The relations among Shannon information entropy, quantum discord, concurrence and localization properties of one-dimensional single-electron wave functions [J]. Eur. Phys. J. B,87, 1(2014).

[6]Shengmei  Zhao , Longyan  Gong(巩龙延,通讯作者), Yongqiang Li, Hua Yang, Yubo Sheng and weiwen Cheng . A large-alphabet quantum key distribution protocol using orbital angular momentum entanglement [J]. Chin. Phys. Lett. 30, 060305(2013).

[7]S.M. Zhao, H. Yang , Y.Q. Li, F. Cao, Y.B. Sheng , W.W. Cheng,L.Y. Gong(巩龙延,通讯作者),The influence of atmospheric turbulence on holographic ghost imaging using orbital angular momentum entanglement: simulation and experimental studies[J]. Optics Communications, 294,223 (2013).

  

[8] Longyan Gong(巩龙延), Ling Wei, Shengmei Zhao and Weiwen Cheng,

Comparison of Shannon information entropies in position and momentum space for an electron in one-dimensional nonuniform systems[J], Phys. Rev. E, 86, 061122(2012).

[9] S.M. Zhao, J. Leach, L.Y. Gong(巩龙延), J. Ding, and  B. Y. Zheng.  Aberration corrections for free - space   optical communications in atmosphere turbulence using orbital angular momentum states [J].Optics Express, 20, 452(2012).

[10] Longyan Gong(巩龙延), Hao Zhu, Shengmei Zhao, Weiwen Cheng, Yubo Sheng. Quantum discord and classical correlation signatures of mobility edges in one-dimensional aperiodic single-electron systems[J]. Phys. Lett. A 376, 3026(2012).

[11] L.Y. Gong(巩龙延), Zicong Zhou(周子聪), Peiqing Tong(童培庆), Shengmei Zhao. Statistical properties of one-dimensional binary sequences with power-law power spectrum [J]. Physica A, 390 ,29772011.

[12] Longyan Gong(巩龙延), Peiqing Tong, and Zicong Zhou. von Neumann entropy signatures of a transition in one- dimensional electron systems with long - range correlated disorder[J]. Eur. Phys. J. B 77, 413 (2010).

[13] Longyan Gong(巩龙延) and Peiqing Tong. von Neumann entropy to characterize localization- delocalization transitions in a two-dimensional quantum percolation model[J]. Phys. Rev. B 80, 174205(2009).

[14] Longyan Gong(巩龙延) and Peiqing Tong. Fidelity, Fidelity susceptibility and von Neumann entropy to characterize the phase diagram of an extended Harper model[J].Phys. Rev. B 78, 115114 (2008).

[15] Longyan Gong(巩龙延)and Peiqing Tong. von Neumann entropy and localization properties of two interacting particles in one-dimensional nonuniform systems[J]. Phys. Rev. B 76, 085121 (2007).

[16] Longyan Gong(巩龙延) and Peiqing Tong. von Neumann entropy and localization –delocalization transition of electron states in quantum small-world networks[J].Phys. Rev. E 74, 056103 (2006).

[17] Longyan Gong(巩龙延) and Peiqing Tong. Mode entanglement of an electron in one-dimensional determined and random potentials[J].Phys. Rev. A 71, 042333 (2005).

联系地址

江苏省 南京市亚东新城区文苑路9号, BETVLCTOR伟德官网app下载 BETVLCTOR伟德官网app下载用物理系

邮政编码

210046



Copyright © BETVLCTOR伟德官网app下载  All Rights Reserved.